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Introduction

Let RC S be an inclusion of Krull domains. The extension S/R is said to satisfy
condition (PDE), and the inclusion of R in S is said to be a Krull morphism, if for
every height one prime q of S, gN R has height at most one. Condition (PDE) is also
called (NBU). This condition is useful because when it holds there is an induced map
from the class group of R to that of S (see [3, §6]). In this paper we obtain a module-
theoretic characterization of when S/R satisfies (PDE), namely precisely when S is
divisorial as an R-module. In the course of obtaining this characterization we
describe how divisoriality relates to flatness.

Divisoriality, flatness and condition (PDE)

Let R be a Krull domain, X its field of fractions, Z the set of prime ideals of
height one in R. Let M be a torsion-free R-module and let V'=K®, M. We define
the R-submodule M of V by the formula

M= M,.
peZ
There is an obvious inclusion of M into M, and if M =M we say M is divisorial.

Let M be a torsion-free R-module, V=K&; M. M is an R-lattice if there is an
R-module F of finite type with M C FC V. It is easy to verify that rank(M) is then
finite and that F may be taken to be a free R-module of finite type. If M is an
R-lattice so is

(R:M)={feHom(V,K)|f(M)C R},
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and there is a natural isomorphism
M=(R:(R:M)).

Since (R:M) has a natural identification with Homg(M, R), it follows that an
R-lattice M is divisorial if and only if M is reflexive, i.e. if and only if the canonical
homomorphism M — M**is an isomorphism. For details see [1, Ch. VIII, §4, no. 2],
[2, Ch. III, §8], or {3, §2].

For pin Z the ring R, is a principal ideal domain. Hence, an R,-module is R ,-flat
if and only if it is torsion-free. Since R, is a flat R-module, any R,-module that is
R,-flat is R-flat. Hence, any divisorial R-module M is an intersection in V (its
extension to K) of flat R-modules M,,. The family {M,},¢ 7 has a finiteness property
with respect to V, namely that each element ¥ is in all but a finite number of the
M,. This follows from R being a Krull domain, specifically from the fact that each
non-zero element of R is a unit in all but finitely many R,, pin Z.

Let V be a vector space over K, and {M,};.,; a family of R-submodules of V, with
KM, =V for each i in I. We shall say this family is of finite character if each element
v of Vis in all but finitely many M.

Lemma 1. Let {M;};.; be a family of finite character. Let S be a multiplicative
subset of R. Then

@ SN M) =,., S'M..

(b) If each M, is a divisorial R-module, so is ie1 M.

Proof. (a) The left-hand term is clearly contained in the right-hand one. Let v be in
the right-hand term. By the finite character of the family {M;}, there is a finite
subset J of 7 such that v is in M; for j in L, the complement of J in [. It is generally
true that

S-{MNN)=(S~'M)N(S~'N) (1

for any R-modules M and M. It follows that
s M)=) 50,
jed JjeJ

By hypothesis, v is in the right-hand side of the last formula, hence in the left hand-
side. Letting M = ﬂjel M;, N= ﬂieL M; and applying (1) we conclude v is in the left-
hand term of (a).

(b) follows by using (a) as necessary with S=R —p, p in Z, and the definition of
divisoriality.

Proposition 1. Let R be a Krull domain with field of fractions K. Let M be a
torsion-free R-module, V=K&, M. Then M is divisorial if and only if M is the
intersection of a family of finite character each module of which is R-flat.
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Proof. This follows from the lemma above and the discussion preceding it.

Corollary 1. Let R be a Krull domain, M a torsion-free R-module. Then M is
divisorial.
In the proof of Lemma 1 we exploited the fact that
S MNN)=S"'"MNS~'N

to show that
(0w

when {M;},¢,is a family of finite character. The same idea can be used to prove that
for such a family

M (ﬂ M,-)=r) (M@, M)

when M is a flat R-module, since tensoring with a flat module preserves finite inter-
sections [1,Ch. I, §2, no. 6]. We record this result for later reference.

Corollary 2. Let M be a flat R-module, and {M;};., a family of finite character.
Then

M®y (Q M,~) = (M@, M)).

ief

Corollary 3. Let S be a multiplicative set of R and M an R-module. If M is divisorial
over R then S™'M is divisorial over S™'R.

Let M and N be torsion-free R-modules. let MN denote the image of M@z N in
K®p M ®, N. Define the modified tensor product of M and N by
M@y N=MN.

For (m,n) in M X N let a(m, n) be the element 1 @ m& n of K@, M & N. View a as
amap to M &, N. Let y be the map sending (m, n) to m&@ n in M @, N. Because a is
bilinear there is a commutative diagram

MxN

f/ \r ' @)
b4

M®;N M@z N

We record some basic facts about X, some of which were noted by Yuan in
Lemma 4 of [4] for modules of finite type and R noetherian.
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Proposition 2. Let L, M, N, M; be torsion-free R-modules. Then:

(a) Givenan R-homomorphism f: M — N, there exists a unique R-homomorphism
f:M—N which on M restricts to f. For g: L—M we have (fg) =J3.

(b) M@, N is divisorial.

(c) If L is divisorial and 6 : M x N—L is an R-bilinear map, then there exists a
unique R-homomorphism 3 : M@ N—L satisfying Ao =0 (with a as in (2) above).

(d) If M and N are R-lattices s0 is M@, N.

(e) If M is R-flat then it is divisorial. If in addition N is divisorial then the map y
of (2) above is an isomorphism.

(f) If B is an R-algebra and M is a B-module then there is a B-module structure
on M@, N which makes y a B-module homomorphism.

(8) RO M=M. L

(h) L@R(M®RN)=(L®_RM)®RN-

() L®k (@ M) =@ (L R M).

() M@ N=N@M. )

(k) Let S be a multiplicative subset of R and let B=S"'R. Then ST'\(M®zN) =
STIM®;S~'N.

Proof. (a)is clear. (b) follows from the corollary to Proposition 1. (c) follows from
(a) and (b). (d) follows from the well-known facts that if M, N are R-lattice, so is
MN and therefore (R: (R : MN)) is an R-lattice as well.

The first assertion of (e) is a consequence of Proposition 1. The second asserticn
follows from Corollary 2 to Proposition 1. (f) follows from (b) and (c). Assertions
(g) to (j) are easy to prove.

To prove (k) we shall establish that there are maps in both directions between
S Y M@ N) and S"'M &, S~'N whose composites are clearly the identity maps.
First note that each of the modules involved is divisorial over B. For S~}{(M ®R N)
this is true by (b) and by Corollary 3 to Proposition 1. For S"'M®;, SN we need
only invoke (b) with R replaced by S™'R. The existence of the maps we want is now
easily established using (c) and properties of the functor S7!( ).

Corollary. Let R be a Krull domain, M an R-lattice. If M is flat it is a projective
R-module of finite type.

Proof. There is a natural map f from M®,M* to End.(M) satisfying
Sfx®a)=a()x for x in M, a in M*. Because M is a divisorial R-lattice, so is
End (M) [3, Proposition 2.6]. M&®, M* is a divisorial R-module by (b) and (e)
above. For each height one prime p of R, f,is an isomorphism (use (k) above and the
equality Homz(M, R),=Homg (M,, R,) (see [2, p. 151, Cor. 8.4] or [3, Cor. 5.5)]).
By divisoriality of the modules involved, f must itself be an isomorphism. If
S(X x;® ;) =1 then the finite set {x;, ¢;} is a projective basis for M.
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Let R C S be an inclusion of Krull domains having respective fraction fields K and
L. Let M be an R-lattice, V'=K®, M. Then SM is an S-lattice in L ®;SM (3, Pro-
position 2.2 (v)]. Let H be a free S-module of finite rank, with SM C H¢ L ®,SM.
Suppose S is divisorial as an R-module. Then H is also divisorial as an R-module,
because it is free over S. It follows in this case that SM C SMC H (the construction ~
is with respect to R). SM is an S-module by (f) of Proposition 1, hence SM is also an
S-lattice. We have proved:

Lemma 2. Let RC S be an inclusion of Krull domains. Suppose S is divisorial as an
R-module. [f M is an R-lattice, S ®RM is an S-lattice.

Proposition 3. Let R C S be an inclusion of Krull domains. The following conditions
are then equivalent:

(1) For M any divisorial R-lattice, S ®R M is a divisorial S-lattice.

(2) S is divisorial as an R-module.

Proof. Our proof follows that given by Yuan in the noetherian case [4, Proposi-
tion 2]. Assuming (1), § must be a divisorial S-lattice. Let L be the field of fractions
of S. Then $¢ L. Then for any x in § there is an S-module H of finite type such that
¥ Sx'C H. Because S is a Krull domain it is completely integrally closed. This
implies x is in S, hence $= S and (2) holds.

Suppose (2) holds. Let M be a divisorial R-lattice. By Lemma 2, S®, M is an
S-lattice. Let Y denote the set of height one primes of S and in the intersections
below let p range over Z,q over Y.

N @ M,=() (s,, ®s (Q (SM),,>>

=N N (S,®s(SM),) (Cor. 2 to Prop. 1)
qQ9 P

!

0 rp] S,®sS®e M, ((SM),=S®xM, since M, is R-flat)

<ﬂ Sq>®R1V[p (Corollary 2 again)
S&@rM, (Sisa Krull domain)

=S®eM (by definition).

This shows S®, M is divisorial as an S-module and completes the proof.

Corollary 1 (of the proof). Let RC S be Krull domains, with S divisorial as an
R-module. If M is a divisorial R-module, S®g M is a divisorial S-module.
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Corollary 2. Let RCSCT be inclusions of Krull domains. [f S is divisorial as an
R-module and T is flat as an S-module then T is divisorial as an R-module.

Proof. Because T is S-flat, T®; Q=7 ®; Q for Q any S-module ((¢) of Proposi-
tion 2). Then for any R-lattice M

T @5 (5@, M) = T®s (S@e M) = T®s( N 5 M,,>

= T®S®xM, (Cor. 2 to Prop. 1)

pezZ

=) T®M,

peZ
=T M.

If M is a divisorial R-lattice, S®RM is a divisorial S-lattice and then T®s (S®R M)
is a divisorial T-lattice (Proposition 3). The equality above then shows T @, M is
a divisorial 7-lattice. By Proposition 3, T is divisorial as an R-module.

Corollary 3. Let RC S be an inclusion of Krull domains, and assume S is a flat
R-module. Then for M a divisorial R-lattice, S®y M is a divisorial S-lattice.

Proof. A consequence of Proposition 3 and (¢) of Proposition 2.

Lemma 3. Let RCS be an inclusion of Krull domains. Let M be an S-module.
Suppose S/R satisfies the condition (PDE), and that M is divisorial over S. Then M
is divisorial over R.

Proof. We know M= ﬂ M,, as q ranges over the height one primes of S. If we can
show that each M, is R-flat, we can conclude M is divisorial by Proposition 1. We
have that M, is flat as an S,-module since S, is a principal ideal domain. Let
Pp=qNR. Because (PDE) holds, R, is a D.V.R. (perhaps a field). Thus S, is flat
over R, hence over R. Hence M, is flat over R.

Theorem 1. Let R ¢ S be an inclusion of Krull domains. Then S/R satisfies (PDE) if
and only if S is divisorial as an R-module.

Proof. If (PDE) holds, Lemma 3 implies the extension is divisorial. Suppose
conversely that S is divisorial as an R-module. Let g be a height one prime of S, and
suppose that P=¢NR has height greater than one. First we will assume g =Sz for
some z in S. We will show that height(P)> 1 implies 1/z is in S, for all p of height
one in R, but is clearly not in S, contradicting divisoriality of S as an R-module. To
show 1/zis in §,, note that p#P. Let b be in P but not in p. But b is in g, hence
b=szwithsin S. Then 1/z=5/b with bin R~p, s0 1/zisin §,.

We can reduce to the case where g is principal as follows. Sj, Rp are Krull
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domains, with RpC S, and PRp=RpNqS,. Thus if (PDE) does not hold for S/R, it
does not hold for S,/Rp. Moreover, S, is flat over Sp because it is a localization. But
S divisorial over R implies Sp is divisorial over Rp (Corollary 3 to Proposition 1).
Thus RpC SpC S, are Krull domains satisfying the hypotheses of Corollary 1 to
Proposition 3. By that corollary we conclude S is divisorial over Rp. Since §; is a
D.V.R., ¢S, is principal, and we complete our proof by referring to the first case
treated above.

Corollary 1. Let RCS. Let M be an S-module. If S is divisorial as an R-module and
M is divisorial as an S-module then M is divisorial as an R-module.

Proof. An immediate consequence of Lemma 3 and Theorem 1.

Corollary 2. Let RC SCT be inclusions of Krull domains, with S divisorial as an
R-module and T divisorial as an S-module. Let M be a divisorial R-module. Then

T ®p M=T®;(S @ M).

Proof. By the previous corollary T is divisorial as an R-module. By Corollary 1 of
Proposition 3, T®RM is divisorial as a T-module. So is T®s (S®R M), There is a
natural map R-homomorphism, call it f, from the first of these modules to the
second (use (a) of Proposition 2). For each height one prime p of R, f, is an
isomorphism (this follows from (k) and (e) of Proposition 2 and the relation
T®eM=T®s(SRp M).

Let R ¢ S be Krull domains, M fand R-module. Define S@; M = ﬂqe y (@ M),
with Y the set of height one primes of S.

Proposition 4. Let R C S be an extension of Krull domains. Then S is divisorial as
an R-module if and only if for all divisorial R-modules M we have S@y M =S ®z M.

Proof. Let S be divisorial over R. Let N=SM, N'=S®; M and 1\7=S®RM. We
have NC N" hence N,C N, for pin Z, hence
Nc [ N;. €))
pel

But N’ is a divisorial S-module by construction, hence is a divisorial R-module by
Corollary 1 to Theorem 1. It follows from this and (3) that N¢ N’. Similarly N is a
divisorial S-module (the proof of Proposition 3 shows that for M a divisorial
R-module S®, M is a divisorial S-module), and this leads to the inclusion NC N".
Thus N=N".

Conversely, if N'=N for N=SM and M a divisorial R-module, taking M =R
shows that $=S’. But S is a Krull domain, so S’=S, hence S=3§, and § is divisorial
as an R-module.
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