DIVISORIAL MODULES AND KRULL MORPHISMS

Morris ORZECH*

Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada

Communicated by H. Bass Received 16 September 1981

Introduction

Let $R \subseteq S$ be an inclusion of Krull domains. The extension S/R is said to satisfy condition (PDE), and the inclusion of R in S is said to be a Krull morphism, if for every height one prime q of S, $q \cap R$ has height at most one. Condition (PDE) is also called (NBU). This condition is useful because when it holds there is an induced map from the class group of R to that of S (see [3, §6]). In this paper we obtain a moduletheoretic characterization of when S/R satisfies (PDE), namely precisely when S is divisorial as an R-module. In the course of obtaining this characterization we describe how divisoriality relates to flatness.

Divisoriality, flatness and condition (PDE)

Let R be a Krull domain, K its field of fractions, Z the set of prime ideals of height one in R. Let M be a torsion-free R-module and let $V = K \bigotimes_R M$. We define the R-submodule \tilde{M} of V by the formula

$$\tilde{M} = \bigcap_{p \in Z} M_p.$$

There is an obvious inclusion of M into \tilde{M} , and if $M = \tilde{M}$ we say M is divisorial.

Let *M* be a torsion-free *R*-module, $V = K \bigotimes_R M$. *M* is an *R*-lattice if there is an *R*-module *F* of finite type with $M \subseteq F \subseteq V$. It is easy to verify that rank(*M*) is then finite and that *F* may be taken to be a *free R*-module of finite type. If *M* is an *R*-lattice so is

$$(R:M) = \{ f \in \operatorname{Hom}_{K}(V,K) \mid f(M) \subseteq R \},\$$

^{*} This research was partially supported by NSERC grant A7202.

and there is a natural isomorphism

$$\tilde{M} \simeq (R : (R : M)).$$

Since (R:M) has a natural identification with $\operatorname{Hom}_R(M, R)$, it follows that an R-lattice M is divisorial if and only if M is reflexive, i.e. if and only if the canonical homomorphism $M \to M^{**}$ is an isomorphism. For details see [1, Ch. VIII, §4, no. 2], [2, Ch. III, §8], or [3, §2].

For p in Z the ring R_p is a principal ideal domain. Hence, an R_p -module is R_p -flat if and only if it is torsion-free. Since R_p is a flat R-module, any R_p -module that is R_p -flat is R-flat. Hence, any divisorial R-module M is an intersection in V (its extension to K) of flat R-modules M_p . The family $\{M_p\}_{p \in Z}$ has a finiteness property with respect to V, namely that each element V is in all but a finite number of the M_p . This follows from R being a Krull domain, specifically from the fact that each non-zero element of R is a unit in all but finitely many R_p , p in Z.

Let V be a vector space over K, and $\{M_i\}_{i \in I}$ a family of R-submodules of V, with $KM_i = V$ for each i in I. We shall say this family is of *finite character* if each element v of V is in all but finitely many M_i .

Lemma 1. Let $\{M_i\}_{i \in I}$ be a family of finite character. Let S be a multiplicative subset of R. Then

- (a) $S^{-1}(\bigcap_{i \in I} M_i) = \bigcap_{i \in I} S^{-1} M_i$.
- (b) If each M_i is a divisorial *R*-module, so is $\bigcap_{i \in I} M_i$.

Proof. (a) The left-hand term is clearly contained in the right-hand one. Let v be in the right-hand term. By the finite character of the family $\{M_i\}$, there is a finite subset J of I such that v is in M_j for j in L, the complement of J in I. It is generally true that

$$S^{-1}(M \cap N) = (S^{-1}M) \cap (S^{-1}N)$$
(1)

for any R-modules M and N. It follows that

 $S^{-1}\left(\bigcap_{j\in J}M_j\right)=\bigcap_{j\in J}S^{-1}M_j.$

By hypothesis, v is in the right-hand side of the last formula, hence in the left handside. Letting $M = \bigcap_{j \in J} M_j$, $N = \bigcap_{i \in L} M_i$ and applying (1) we conclude v is in the lefthand term of (a).

(b) follows by using (a) as necessary with S = R - p, p in Z, and the definition of divisoriality.

Proposition 1. Let R be a Krull domain with field of fractions K. Let M be a torsion-free R-module, $V = K \bigotimes_{\mathbb{R}} M$. Then M is divisorial if and only if M is the intersection of a family of finite character each module of which is R-flat.

Proof. This follows from the lemma above and the discussion preceding it.

Corollary 1. Let R be a Krull domain, M a torsion-free R-module. Then \tilde{M} is divisorial.

In the proof of Lemma 1 we exploited the fact that

$$S^{-1}(M \cap N) = S^{-1}M \cap S^{-1}N$$

to show that

$$S^{-1}\left(\bigcap_{i}M_{i}\right)=\bigcap_{i}S^{-1}M_{i}$$

when $\{M_i\}_{i \in I}$ is a family of finite character. The same idea can be used to prove that for such a family

$$M \otimes_{\mathbb{R}} \left(\bigcap_{i} M_{i} \right) = \bigcap_{i} (M \otimes_{\mathbb{R}} M_{i})$$

when M is a flat R-module, since tensoring with a flat module preserves finite intersections [1,Ch. I, §2, no. 6]. We record this result for later reference.

Corollary 2. Let M be a flat R-module, and $\{M_i\}_{i \in I}$ a family of finite character. Then

$$M\otimes_{R}\left(\bigcap_{i\in I}M_{i}\right)=\bigcap_{i\in I}(M\otimes_{R}M_{i}).$$

Corollary 3. Let S be a multiplicative set of R and M an R-module. If M is divisorial over R then $S^{-1}M$ is divisorial over $S^{-1}R$.

Let M and N be torsion-free R-modules. let MN denote the image of $M \otimes_R N$ in $K \otimes_R M \otimes_R N$. Define the modified tensor product of M and N by

$$M \, \bar{\otimes}_{R} N = M \bar{N}.$$

For (m, n) in $M \times N$ let $\alpha(m, n)$ be the element $1 \otimes m \otimes n$ of $K \otimes_R M \otimes_R N$. View α as a map to $M \otimes_R N$. Let γ be the map sending (m, n) to $m \otimes n$ in $M \otimes_R N$. Because α is bilinear there is a commutative diagram

We record some basic facts about $\tilde{\otimes}_R$, some of which were noted by Yuan in Lemma 4 of [4] for modules of finite type and R noetherian.

Proposition 2. Let L, M, N, M_i be torsion-free R-modules. Then:

(a) Given an R-homomorphism $f: M \to N$, there exists a unique R-homomorphism $\tilde{f}: \tilde{M} \to \tilde{N}$ which on M restricts to f. For $g: L \to M$ we have $(\tilde{fg}) = \tilde{fg}$.

(b) $M \tilde{\otimes}_R N$ is divisorial.

(c) If L is divisorial and $\delta: M \times N \to L$ is an R-bilinear map, then there exists a unique R-homomorphism $\lambda: M \otimes_{\mathbb{R}} N \to L$ satisfying $\lambda \alpha = \delta$ (with α as in (2) above).

(d) If M and N are R-lattices so is $M \otimes_R N$.

(e) If M is R-flat then it is divisorial. If in addition N is divisorial then the map γ of (2) above is an isomorphism.

(f) If B is an R-algebra and M is a B-module then there is a B-module structure on $M \otimes_{\mathbb{R}} N$ which makes γ a B-module homomorphism.

(g) $R \otimes_R M = M$.

(h) $L \tilde{\otimes}_R (M \tilde{\otimes}_R N) = (L \tilde{\otimes}_R M) \tilde{\otimes}_R N.$

(i) $L \tilde{\otimes}_{R} (\bigoplus_{i} M_{i}) = \bigoplus_{i} (L \tilde{\otimes}_{R} M_{i}).$

(j) $M \tilde{\otimes}_R N = N \tilde{\otimes}_R M$.

(k) Let S be a multiplicative subset of R and let $B = S^{-1}R$. Then $S^{-1}(M \otimes_R N) = S^{-1}M \otimes_B S^{-1}N$.

Proof. (a) is clear. (b) follows from the corollary to Proposition 1. (c) follows from (a) and (b). (d) follows from the well-known facts that if M, N are R-lattice, so is MN and therefore (R : (R : MN)) is an R-lattice as well.

The first assertion of (e) is a consequence of Proposition 1. The second assertion follows from Corollary 2 to Proposition 1. (f) follows from (b) and (c). Assertions (g) to (j) are easy to prove.

To prove (k) we shall establish that there are maps in both directions between $S^{-1}(M \otimes_R N)$ and $S^{-1}M \otimes_B S^{-1}N$ whose composites are clearly the identity maps. First note that each of the modules involved is divisorial over *B*. For $S^{-1}(M \otimes_R N)$ this is true by (b) and by Corollary 3 to Proposition 1. For $S^{-1}M \otimes_B S^{-1}N$ we need only invoke (b) with *R* replaced by $S^{-1}R$. The existence of the maps we want is now easily established using (c) and properties of the functor $S^{-1}()$.

Corollary. Let R be a Krull domain, M an R-lattice. If M is flat it is a projective R-module of finite type.

Proof. There is a natural map f from $M \otimes_R M^*$ to $\operatorname{End}_R(M)$ satisfying $f(x \otimes \alpha) = \alpha$ ()x for x in M, α in M^{*}. Because M is a divisorial R-lattice, so is $\operatorname{End}_R(M)$ [3, Proposition 2.6]. $M \otimes_R M^*$ is a divisorial R-module by (b) and (e) above. For each height one prime p of R, f_p is an isomorphism (use (k) above and the equality $\operatorname{Hom}_R(M, R)_p = \operatorname{Hom}_{R_p}(M_p, R_p)$ (see [2, p. 151, Cor. 8.4] or [3, Cor. 5.5]). By divisoriality of the modules involved, f must itself be an isomorphism. If $f(\sum x_i \otimes \alpha_i) = 1$ then the finite set $\{x_i, \alpha_i\}$ is a projective basis for M.

Let $R \subseteq S$ be an inclusion of Krull domains having respective fraction fields K and L. Let M be an R-lattice, $V = K \bigotimes_R M$. Then SM is an S-lattice in $L \bigotimes_S SM$ [3, Proposition 2.2 (v)]. Let H be a free S-module of finite rank, with $SM \subseteq H \subseteq L \bigotimes_S SM$. Suppose S is divisorial as an R-module. Then H is also divisorial as an R-module, because it is free over S. It follows in this case that $SM \subseteq \widetilde{SM} \subseteq H$ (the construction $\widetilde{}$ is with respect to R). SM is an S-module by (f) of Proposition 1, hence \widetilde{SM} is also an S-lattice. We have proved:

Lemma 2. Let $R \subseteq S$ be an inclusion of Krull domains. Suppose S is divisorial as an *R*-module. If M is an *R*-lattice, $S \otimes_R M$ is an S-lattice.

Proposition 3. Let $R \subseteq S$ be an inclusion of Krull domains. The following conditions are then equivalent:

- (1) For M any divisorial R-lattice, $S \otimes_R M$ is a divisorial S-lattice.
- (2) S is divisorial as an R-module.

Proof. Our proof follows that given by Yuan in the noetherian case [4, Proposition 2]. Assuming (1), \tilde{S} must be a divisorial S-lattice. Let L be the field of fractions of S. Then $\tilde{S} \subseteq L$. Then for any x in \tilde{S} there is an S-module H of finite type such that $\sum Sx^i \subseteq H$. Because S is a Krull domain it is completely integrally closed. This implies x is in S, hence $\tilde{S} = S$ and (2) holds.

Suppose (2) holds. Let M be a divisorial R-lattice. By Lemma 2, $S \otimes_R M$ is an S-lattice. Let Y denote the set of height one primes of S and in the intersections below let p range over Z, q over Y.

$$\bigcap_{q} (S \otimes_{R} M)_{q} = \bigcap_{q} \left(S_{q} \otimes_{S} \left(\bigcap_{p} (SM)_{p} \right) \right)$$
$$= \bigcap_{q} \bigcap_{p} \left(S_{q} \otimes_{S} (SM)_{p} \right) \quad (Cor. 2 \text{ to Prop. 1})$$
$$= \bigcap_{q} \bigcap_{p} S_{q} \otimes_{S} S \otimes_{R} M_{p} \quad ((SM)_{p} = S \otimes_{R} M_{p} \text{ since } M_{p} \text{ is } R \text{-flat})$$
$$= \bigcap_{p} \bigcap_{q} S_{q} \otimes_{R} M_{p}$$
$$= \bigcap_{p} \left(\bigcap_{q} S_{q} \right) \otimes_{R} M_{p} \quad (Corollary 2 \text{ again})$$
$$= \bigcap_{p} S \otimes_{R} M_{p} \quad (S \text{ is a Krull domain})$$
$$= S \otimes_{R} M \quad (by \text{ definition}).$$

This shows $S \tilde{\otimes}_{R} M$ is divisorial as an S-module and completes the proof.

Corollary 1 (of the proof). Let $R \subseteq S$ be Krull domains, with S divisorial as an *R*-module. If M is a divisorial *R*-module, $S \otimes_R M$ is a divisorial S-module.

Corollary 2. Let $R \subseteq S \subseteq T$ be inclusions of Krull domains. If S is divisorial as an R-module and T is flat as an S-module then T is divisorial as an R-module.

Proof. Because T is S-flat, $T \otimes_{s} Q = T \otimes_{s} Q$ for Q any S-module ((e) of Proposition 2). Then for any R-lattice M

$$T \tilde{\otimes}_{S} (S \tilde{\otimes}_{R} M) = T \otimes_{S} (S \tilde{\otimes}_{R} M) = T \otimes_{S} \left(\bigcap_{p \in Z} S \otimes_{R} M_{p} \right)$$
$$= \bigcap_{p \in Z} T \otimes_{S} S \otimes_{R} M_{p} \quad (Cor. \ 2 \ to \ Prop. \ 1)$$
$$= \bigcap_{p \in Z} T \otimes_{R} M_{p}$$
$$= T \tilde{\otimes}_{R} M.$$

If M is a divisorial R-lattice, $S \otimes_R M$ is a divisorial S-lattice and then $T \otimes_S (S \otimes_R M)$ is a divisorial T-lattice (Proposition 3). The equality above then shows $T \otimes_R M$ is a divisorial T-lattice. By Proposition 3, T is divisorial as an R-module.

Corollary 3. Let $R \subseteq S$ be an inclusion of Krull domains, and assume S is a flat *R*-module. Then for M a divisorial *R*-lattice, $S \otimes_R M$ is a divisorial S-lattice.

Proof. A consequence of Proposition 3 and (e) of Proposition 2.

Lemma 3. Let $R \subseteq S$ be an inclusion of Krull domains. Let M be an S-module. Suppose S/R satisfies the condition (PDE), and that M is divisorial over S. Then M is divisorial over R.

Proof. We know $M = \bigcap M_q$, as q ranges over the height one primes of S. If we can show that each M_q is R-flat, we can conclude M is divisorial by Proposition 1. We have that M_q is flat as an S_q -module since S_q is a principal ideal domain. Let $p = q \cap R$. Because (PDE) holds, R_p is a D.V.R. (perhaps a field). Thus S_q is flat over R_p , hence over R. Hence M_q is flat over R.

Theorem 1. Let $R \subseteq S$ be an inclusion of Krull domains. Then S/R satisfies (PDE) if and only if S is divisorial as an R-module.

Proof. If (PDE) holds, Lemma 3 implies the extension is divisorial. Suppose conversely that S is divisorial as an R-module. Let q be a height one prime of S, and suppose that $P = q \cap R$ has height greater than one. First we will assume q = Sz for some z in S. We will show that height(P)>1 implies 1/z is in S_p for all p of height one in R, but is clearly not in S, contradicting divisoriality of S as an R-module. To show 1/z is in S_p , note that $p \neq P$. Let b be in P but not in p. But b is in q, hence b = sz with s in S. Then 1/z = s/b with b in R - p, so 1/z is in S_p .

We can reduce to the case where q is principal as follows. S_q, R_P are Krull

domains, with $R_P \subseteq S_q$ and $PR_P = R_P \cap qS_q$. Thus if (PDE) does not hold for S/R, it does not hold for S_q/R_P . Moreover, S_q is flat over S_P because it is a localization. But S divisorial over R implies S_P is divisorial over R_P (Corollary 3 to Proposition 1). Thus $R_P \subseteq S_P \subseteq S_q$ are Krull domains satisfying the hypotheses of Corollary 1 to Proposition 3. By that corollary we conclude S is divisorial over R_P . Since S_q is a D.V.R., qS_q is principal, and we complete our proof by referring to the first case treated above.

Corollary 1. Let $R \subseteq S$. Let M be an S-module. If S is divisorial as an R-module and M is divisorial as an S-module then M is divisorial as an R-module.

Proof. An immediate consequence of Lemma 3 and Theorem 1.

Corollary 2. Let $R \subseteq S \subseteq T$ be inclusions of Krull domains, with S divisorial as an *R*-module and *T* divisorial as an S-module. Let *M* be a divisorial *R*-module. Then $T \otimes_{\mathbb{R}} M \cong T \otimes_{\mathbb{S}} (S \otimes_{\mathbb{R}} M)$.

Proof. By the previous corollary T is divisorial as an R-module. By Corollary 1 of Proposition 3, $T \otimes_R M$ is divisorial as a T-module. So is $T \otimes_S (S \otimes_R M)$. There is a natural map R-homomorphism, call it f, from the first of these modules to the second (use (a) of Proposition 2). For each height one prime p of R, f_p is an isomorphism (this follows from (k) and (e) of Proposition 2 and the relation $T \otimes_R M \approx T \otimes_S (S \otimes_R M)$.

Let $R \subseteq S$ be Krull domains, M fand R-module. Define $S \otimes_R' M = \bigcap_{q \in Y} (S \otimes_R M)_q$, with Y the set of height one primes of S.

Proposition 4. Let $R \subseteq S$ be an extension of Krull domains. Then S is divisorial as an R-module if and only if for all divisorial R-modules M we have $S \otimes_R' M = S \otimes_R M$.

Proof. Let S be divisorial over R. Let N = SM, $N' = S \otimes_R' M$ and $\tilde{N} = S \otimes_R M$. We have $N \subseteq N'$ hence $N_p \subseteq N'_p$ for p in Z, hence

$$\vec{N} \subseteq \bigcap_{p \in \mathbb{Z}} N'_p. \tag{3}$$

But N' is a divisorial S-module by construction, hence is a divisorial R-module by Corollary 1 to Theorem 1. It follows from this and (3) that $\tilde{N} \subseteq N'$. Similarly \tilde{N} is a divisorial S-module (the proof of Proposition 3 shows that for M a divisorial R-module $S \otimes_{R} M$ is a divisorial S-module), and this leads to the inclusion $\tilde{N} \subseteq N'$. Thus $\tilde{N} = N'$.

Conversely, if $N' = \tilde{N}$ for N = SM and M a divisorial R-module, taking M = R shows that $\tilde{S} = S'$. But S is a Krull domain, so S' = S, hence $S = \tilde{S}$, and S is divisorial as an R-module.

References

- [1] N. Bourbaki, Algèbre Commutative (Hermann, Paris, 1965).
- [2] H. Bass, Algebraic K-Theory (Benjamin, New York, 1968).
- [3] R.M. Fossum, The Divisor Class Group of a Krull Domain (Springer, New York, 1973).
- [4] S. Yuan, Reflexive modules and algebra class groups over noetherian integrally closed domains, J. Algebra 32 (1974) 405-417.